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Motivation

Does NC Geometry award us with a theory of quantum gravity?

QFT in Curved-Spacetimes is a zero order approximation to QG

⇒ Fuse NCG with QFT in Curved-Spacetimes to obtain first order
approximation.



Intro, What

▶ Generalize NQFT in Minkowski to curved spacetime rigorously

▶ Prove that it complies with the equivalence principle



Intro, Why

▶ QFT in curved spacetimes provided various achievements (e.g. black
hole entropy, quantum inequalities, descriptions of early universe,
particle interpretation, ...)

▶ Any theory of QG must contain QFT in CST as a limiting case

▶ Supply a proof as to the connection to quantum gravity



NC Generalization

Goal: Generalize Star Product (or Rieffel product)

(f ⋆θ g) (z) = lim
ϵ→0

∫∫
χ(ϵx , ϵy) f (z +Θx) g(z + y) e−i x·yd4x d4y

from flat to curved manifolds!

Technical problem: In General Spacetimes there are NO translations

Idea in Fröb, Much [JMP21] in case of de Sitter: Embed the spacetime in
a higher dimensional flat Minkowski where translations exist

This idea is further developed to all globally hyperbolic spacetimes,
[AM, A Deformation Quantization for Non-Flat Spacetimes and
Applications to QFT ’21]



Embedding in GHST

Theorem (Sanchez, Müller 11)

Let (M, g) be a globally hyperbolic spacetime. Then, it admits an
isometric embedding in LN

∃ F : M → LN , with local coordinates XA = (Xµ,X a)

N∑
A=0

∂XA

∂xµ
∂XA

∂xν
= gµν .

Existence of F ≡ existence of solutions for Diff. equations

XA = XA(xµ).



Embeddings

Example

For example, in the case of embedding the unit sphere S2 into R3, the
differentiable map F : R3 → R is

F (X ) = X 2
1 + X 2

2 + X 2
3 − 1,

or for the N-dimensional de Sitter dSN a map F : RN+1 7→ R is

F (X ) = −X 2
0 + X 2

i + X 2
N − H−2,

with index i = 1, · · · ,N − 1 and where H is the Hubble parameter.



Moving in the Embedded Spacetime

Theorem

Let M be an embedded submanifold of RN . Then, the tangent space
TXM is given as the kernel of the differential of any local defining
function F at X ,

TXM = kerDF (X ).

Example

RN−1 = {X ∈ RN : XN = 0} (trivially) embedded into RN , where
F (X ) = XN . The differential of F is DF (X )[V ] = V A∇AF . The tangent
space TXRN is the set of all vectors V where DF (X )[V ] = 0. Since the
gradient of F vanishes if A ̸= N and is 1 if A = N the kernel of DF (X )
consists of all V ∈ RN such that V N = 0, i.e.

TXRN−1 = kerDF (X ) = RN−1.



Example

For the unit sphere SN−1 = {X ∈ RN : XAX
A = 1,A = 1, · · · ,N}, we

have DF (X )[V ] = XAV
Aand the tangent spaces TXSN−1 for X ∈ SN−1

are the vectors V s.t. DF (X )[V ] = 0, i.e.

TXSN−1 = ker DF (X ) = {V ∈ RN : XAV
A = 0}.



Orthogonal Projector

Lemma

The orthogonal projector PZ : RN 7→ TZM Z ∈ M, which is a smooth
map, can be represented by a matrix P ∈ RN×N

ProjZ (V
A) = PA

C (Z )V
C .

which is uniquely determined by the conditions

P(Z ) = P(Z )2 = P(Z )T

for Z ∈ M and V ∈ TZM

P(Z )V = V .



Example

For the N − 1 dimensional (unit) sphere embedded into a one
dimensional higher Euclidean space the orthogonal projector is

(ProjX )
B
A = δ B

A − XAX
B ,

where ProjX : RN → TXSN−1,

(X ,ProjX (V ))X = XA(δ B
A − XAX

B)VB

= XAVA − X 2︸︷︷︸
=1

XBVB = 0.



Gradient

Proposition
Let (M, g) be a (Pseudo-)Riemannian submanifold of (RN , (·, ·))) and
let f : M → R be a smooth function. The (Pseudo-)Riemannian
gradient of f is defined by

∇Af (X ) = ProjX (∂A f̄ (X ))

where f̄ is any smooth extension of f to a neighborhood of M in RN and
∂ denotes the (Pseudo-)Euclidean gradient w.r.t. the coordinate X .



Retraction

Next, we introduce the concept of retraction at the point x ∈ M.

Definition

A retraction on a manifold M is a smooth map R from the tangent
bundle TM onto the manifold M

R : TM → M : (x , v) 7→ Rx(v)

such that each curve c(t) = Rx(tv) satisfies c(0) = x and c ′(0) = v .

Definition

A second-order retraction R on a (Pseudo-)Riemannian manifold M is a
retraction such that, for all x ∈ M and all v ∈ TxM, the curve
c(t) = Rx(tv) has zero acceleration at t = 0, that is, c ′′(0) = 0.



Examples

Example

The retraction on a linear manifold RN is a translation

RX (ξ) = x + ξ,

where x ∈ RN and ξ ∈ TxRN .

Example

Let M = Sn−1 be the (n − 1)-dimensional sphere, then a retraction is
specified by

RX (ξ) =
X + ξ

∥X + ξ∥
=

X + ξ√
1 + ∥ξ∥2

where X ∈ Sn−1 and ξ ∈ TXSn−1.



Using the gradients, hessians, projectors and the second-order retraction
we have a Taylor expansion on curves given by,

f (Rx(v)) = f (x) + (v ,∇ f (x))x +
1
2
(v ,∇v∇f (x))x +O(v3).



Poisson Bivector

Definition

A Poisson bivector on a smooth manifold M is a smooth bivector field
π ∈ Γ∞(Λ2(TM)), i.e. π is a smooth skew-symmetric tensor, satisfying

πAB∂Aπ
CD + πAC∂Aπ

DB + πAD∂Aπ
BC = 0.

Choosing local coordinates (U,X ), any Poisson bivector is given by

π|U =
1
2

∑
A,B

πAB ∂

∂XA
∧ ∂

∂XB
.

The connection between the Poisson bracket and the Poisson bivector is

{f , g} =
∑
A,B

πAB∂Af ∂Bg .



The Curved Star Product

Definition

Let the matrix Θ := θ π, where θ ∈ R. Then, the generalized Rieffel
product of two functions (f , g) ∈ Dm

ρ,δ(M) is defined as

(f ⋆θ g) (z) ≡ lim
ϵ→0

∫∫
χϵ(X ,Y ) f (RZ (ΘX )) g(RZ (Y )) e−i(X ,Y )zdX dY

where Z is the embedding point corresponding to z , X ,Y ∈ TZM.



Properties of the Non-flat Star Product

Proposition
For functions (f , g) ∈ Dm

ρ,δ(M) the generalized Rieffel product is
well-defined and satisfies the following properties

▶ Unital,
1 ⋆θ f = f ⋆θ 1 = f

▶ The commutative limit,

lim
θ→0

(f ⋆θ g)(z) = (f · g)(z),

▶ The flat limit: Retractions are translations with constant Poisson
bivector such that the generalized Rieffel product turns to the
standard star product.



Associativity

Theorem

Let the Poisson bivector π ∈ Γ∞(Λ2(TZM)) fulfill

∇Uπ
CD(Z ) = 0

for all U ∈ TZM and Z ∈ M. Then, the generalized Rieffel product is
associative up to second order in θ, and it is explicitly given by

(f ⋆θ g) (z) = fg − iΘAB ∂Af ∂Bg − 1
2
ΘACΘBD∂A∇B f ∂C∇Dg ,

for functions (f , g) ∈ Dm
ρ,δ(M).



NC Structures

Proposition
The generalized Rieffel product is Poisson compatible,

i

2
(f ⋆θ g − g ⋆θ f ) = θ {f , g}π.

Hence, the noncommutativity of the coordinates {XA,XB} = πAB ,
follows explicitly from the deformation, i.e.

[XA,XB ]θ = −2iθπAB

For the flat case,

[xµ, xν ]θ = −2iθπµν ,

and for the two-sphere

[XA,XB ]θ = −2iθ εABCX
C .



Deformed Product for Two Different Points

The main motivation for this extension is the application of deformations
to QFT (e.g. two-point function).

Definition
Let the matrix Θ := θ π, where θ ∈ R. Then, the generalized Rieffel
product of two functions (f , g) ∈ Dm

ρ,δ(M) at two different points is
defined as

f (z1) ⋆θ g(z2) ≡ lim
ϵ→0

∫∫
χϵ(X ,Y ) f (RZ1(Θ δ(Z1,Z2)X )) g(RZ2(Y ))

× e−i (X ,Y )z2

where Z1 and Z2 are the embedding point corresponding to z1 and z2,
X ,Y ∈ TZ2M. Moreover, δ A′

B (Z1,Z2) is the operator of geodesic
transport from TZ2M to TZ1M.



Explicit Star Product

Proposition
The deformed product for two different points is given up to second order
in the deformation parameter as,

f (z1) ⋆θ g(z2) = f (z1)g(z2)− iΘAB′
(Z1,Z2) ∂Af (Z1) ∂B′g(Z2)

−ΘABC ′D′
∂A ∇B f (Z1) ∂C ′∇D′g(Z2) +O(Θ3),

where we defined

ΘAB′
(Z1,Z2) := ΘAB(Z1) δ

B′

B (Z1,Z2),

ΘABC ′D′
(Z1,Z2) :=

1
4
(
ΘAC ΘBD +ΘAD ΘBC

)
δ D′

D (Z1,Z2) δ
C ′

C (Z1,Z2).



⇒ Next, we apply the developed methods to QFT in Curved Spacetimes



Intro QFTCST

QFTs are rigorously constructed for Globally Hyperbolic spacetimes

Advantages: Exist direction of a time, well-posed Cauchy problem

Disadvantages: No preferred State

(GNS) For a given state (positive linear functional) ω over the (unital)
∗-algebra A , one obtains a quadruple (Hω,Dω, πω,Ψω). Field operators
are given by

ϕω(F ) = πω(ϕ(f )) : Dω → Hω

Then the n-point functions are given by

ωn(ϕ(F1) · · ·ϕ(Fn)) = ⟨Ψω|πω(ϕ(F1)) · · ·πω(ϕ(Fn))Ψω⟩



Hadmard States

Preferred states: Hadamard States (resemble singularity structure
Minkowski)

In a convex neighborhood C of (M, g) the Hadamard parametrix is

Hϵ(x , y) =
u(x , y)

σ2
ϵ (x , y)

+ v(x , y) log

(
σ2
ϵ (x , y)

λ2

)
where σ2(x , y) is the geodesic distance (the Synge function), T is any
local time coordinate increasing towards the future, λ > 0 a length scale
and

σ2
ϵ (x , y)

def
= σ2(x , y) + 2iϵ(T (x)− T (y)) + ϵ2 ,



Application to QFT in GHST

Definition

For a ∗-algebra A = A (M, g) defined on a globally hyperbolic spacetime
(M, g) generated by Klein-Gordon fields the deformed 2-point function is
defined as follows

ωΘ
2 (ϕ(F1)ϕ(F2)) := ⟨Ψω|πω(ϕ(F1)) ⋆θ πω(ϕ(F2))Ψω⟩

=

∫
F1(x1) ⋆θ F2(x2) ⟨Ψω|πω(ϕ(x1))πω(ϕ(x2))Ψω⟩ dvolg (x1) dvolg (x2)



Does the Deformation make Sense?

Definition

If u ∈ D′(Rn), a pair (x , k) ∈ Rn × (Rn\{0}) is a regular direction for u if
∃ constants CN , N ∈ N so that∣∣∣∣ϕ̂u(k)∣∣∣∣ < CN

1 + |k |N
, ∀k ∈ V , ϕ ∈ C∞

0 (Rn)

Definition (Wave front set)

The wavefront set of u is defined to be

WF (u) = {(x , k) ∈ Rn×(Rn\{0}) : (x , k) is not a regular direction for u}.



Useful properties of the WF set

▶ If f ∈ C∞
0 it has an empty wavefront set WF (f ) = ∅.

▶ WF (αu + βv) ⊂ WF (u) ∪WF (v) for u, v ∈ D′(Rn), α, β ∈ C.

▶ If P is any differential operator with smooth coefficients, then

WF (Pu) ⊂ WF (u)

Let N be the bundle of nonzero null covectors on M:

N = {(x , ξ) ∈ T ∗M : ξ a non-zero null at p}.
N± = {(x , ξ) ∈ N : ξ is future(+)/past(−)directed}.



WF set and QFT

Definition

A state ω obeys the Microlocal Spectrum Condition (µSC ) if

WF (ω2) ⊂ N+ ×N−.

Theorem (Radzikowski 96)

The µSC is equivalent to the Hadamard condition.

Theorem
If ω and ω′ obey the µSC then

ω2 − ω′
2 ∈ C∞(M ×M),

i.e. the µSC determines an equivalence of class of states under equality
of the two-point functions modulo C∞.



Micro-local condition in the deformed Setting

Theorem

Let the state ω obey the microlocal spectrum condition. Then, the
deformed state ωΘ obeys the microlocal spectrum condition as well, i.e.

WF (ωΘ
2 ) ⊂ N+ ×N−.

Proof.

ωΘ
2 (X1,X2) = PΘω2(X1,X2)

= ω2(X1,X2)− i ∂A∂B′(ΘAB′
(X1,X2)ω2(X1,X2))

−∇A ∂B∇C ′∂D′(ΘABC ′D′
(X1,X2)ω2(X1,X2)),

where PΘ is a fourth-order differential operator with smooth coefficients,
that depend on the Poisson bivector, the orthogonal projection and the
parallel transport.



Corollary

The deformed two-point function ωΘ
2 is Hadamard.

=⇒ Deformations physically meaningful since they satisfy the
equivalence principle



Uniqueness of Embeddings

Theorem
Let the deformed states ωθ

2 and ω′θ
2 be defined using either two different

isomorphic embeddings or/and retractions. Then, the deformed
two-point functions ωΘ

2 and ω′Θ
2 have the same wavefront set, i.e.

WF (ωΘ
2 ) = WF (ω′Θ

2 ).

Proof.
Due to the smoothness of the embedding, the deformed two-point
functions ωΘ

2 and ω′Θ
2 obey the µSC and according to Theorem 24, their

difference is smooth. Hence, by Property 1 of the WF set we have

WF (ωΘ
2 − ω′Θ

2 ) = 0.



Conclusions and Outlook

▶ QFT in noncommutative (or quantized) curved spacetimes agrees
with the equivalence principle

▶ Deformation can be extended to n-point functions

▶ Rigorous Framework to examine achievements in curved spacetime
with NC component, e.g. Hawking effect, Quantum energy
inequalities, Entropies (Joint work with H. Grosse, Rainer Verch),
semi-classical effects

▶ Predict testible quantum gravitational effects



Thank you for your Attention!


