Noncommutative Quantum Field Theory A Viable Approach to Quantum Gravity?

Albert Much
University of Leipzig, Institute for Theoretical Physics,
D-04081 Leipzig,
Germany

Seminar IFS

Motivation

Does NC Geometry award us with a theory of quantum gravity?

QFT in Curved-Spacetimes is a zero order approximation to QG
\Rightarrow Fuse NCG with QFT in Curved-Spacetimes to obtain first order approximation.

Intro, What

- Generalize NQFT in Minkowski to curved spacetime rigorously
- Prove that it complies with the equivalence principle

Intro, Why

- QFT in curved spacetimes provided various achievements (e.g. black hole entropy, quantum inequalities, descriptions of early universe, particle interpretation, ...)
- Any theory of QG must contain QFT in CST as a limiting case
- Supply a proof as to the connection to quantum gravity

NC Generalization

Goal: Generalize Star Product (or Rieffel product)

$$
\left(f \star_{\theta} g\right)(z)=\lim _{\epsilon \rightarrow 0} \iint \chi(\epsilon x, \epsilon y) f(z+\Theta x) g(z+y) e^{-i x \cdot y} d^{4} x d^{4} y
$$

from flat to curved manifolds!
Technical problem: In General Spacetimes there are NO translations
Idea in Fröb, Much [JMP21] in case of de Sitter: Embed the spacetime in a higher dimensional flat Minkowski where translations exist

This idea is further developed to all globally hyperbolic spacetimes, [AM, A Deformation Quantization for Non-Flat Spacetimes and Applications to QFT '21]

Embedding in GHST

Theorem (Sanchez, Müller 11)

Let (M, g) be a globally hyperbolic spacetime. Then, it admits an isometric embedding in \mathbb{L}^{N}
$\exists F: M \rightarrow \mathbb{L}^{N}$, with local coordinates $X^{A}=\left(X^{\mu}, X^{a}\right)$

$$
\sum_{A=0}^{N} \frac{\partial X^{A}}{\partial x^{\mu}} \frac{\partial X_{A}}{\partial x^{\nu}}=g_{\mu \nu}
$$

Existence of $F \equiv$ existence of solutions for Diff. equations

$$
X^{A}=X^{A}\left(x^{\mu}\right)
$$

Embeddings

Example

For example, in the case of embedding the unit sphere \mathbb{S}^{2} into \mathbb{R}^{3}, the differentiable map $F: \mathbb{R}^{3} \rightarrow \mathbb{R}$ is

$$
F(X)=X_{1}^{2}+X_{2}^{2}+X_{3}^{2}-1,
$$

or for the N-dimensional de Sitter $d \mathbb{S}^{N}$ a map $F: \mathbb{R}^{N+1} \mapsto \mathbb{R}$ is

$$
F(X)=-X_{0}^{2}+X_{i}^{2}+X_{N}^{2}-H^{-2},
$$

with index $i=1, \cdots, N-1$ and where H is the Hubble parameter.

Moving in the Embedded Spacetime

Theorem
Let \mathcal{M} be an embedded submanifold of \mathbb{R}^{N}. Then, the tangent space $T_{X} \mathcal{M}$ is given as the kernel of the differential of any local defining function F at X,

$$
T_{X} \mathcal{M}=\operatorname{ker} D F(X)
$$

Example

$\mathbb{R}^{N-1}=\left\{X \in \mathbb{R}^{N}: X^{N}=0\right\}$ (trivially) embedded into \mathbb{R}^{N}, where $F(X)=X^{N}$. The differential of F is $D F(X)[V]=V^{A} \nabla_{A} F$. The tangent space $T_{X} \mathbb{R}^{N}$ is the set of all vectors V where $D F(X)[V]=0$. Since the gradient of F vanishes if $A \neq N$ and is 1 if $A=N$ the kernel of $D F(X)$ consists of all $V \in \mathbb{R}^{N}$ such that $V^{N}=0$, i.e.

$$
T_{X} \mathbb{R}^{N-1}=\operatorname{ker} D F(X)=\mathbb{R}^{N-1}
$$

Example

For the unit sphere $\mathbb{S}^{N-1}=\left\{X \in \mathbb{R}^{N}: X_{A} X^{A}=1, A=1, \cdots, N\right\}$, we have $D F(X)[V]=X_{A} V^{A}$ and the tangent spaces $T_{X} \mathbb{S}^{N-1}$ for $X \in \mathbb{S}^{N-1}$ are the vectors V s.t. $D F(X)[V]=0$, i.e.

$$
T_{X} \mathbb{S}^{N-1}=\operatorname{ker} D F(X)=\left\{V \in \mathbb{R}^{N}: X_{A} V^{A}=0\right\}
$$

Orthogonal Projector

Lemma

The orthogonal projector $P_{Z}: \mathbb{R}^{N} \mapsto T_{Z} \mathcal{M} Z \in \mathcal{M}$, which is a smooth map, can be represented by a matrix $P \in \mathbb{R}^{N \times N}$

$$
\operatorname{Proj}_{Z}\left(V^{A}\right)=P_{C}^{A}(Z) V^{C}
$$

which is uniquely determined by the conditions

$$
P(Z)=P(Z)^{2}=P(Z)^{T}
$$

for $Z \in M$ and $V \in T_{Z} M$

$$
P(Z) V=V
$$

Example

For the $N-1$ dimensional (unit) sphere embedded into a one dimensional higher Euclidean space the orthogonal projector is

$$
\left(\operatorname{Proj}_{X}\right)_{A}^{B}=\delta_{A}^{B}-X_{A} X^{B},
$$

where $\operatorname{Proj}_{x}: \mathbb{R}^{N} \rightarrow T_{X} \mathbb{S}^{N-1}$,

$$
\begin{aligned}
\left(X, \operatorname{Proj}_{X}(V)\right) x & =X^{A}\left(\delta_{A}^{B}-X_{A} X^{B}\right) V_{B} \\
& =X^{A} V_{A}-\underbrace{X^{2}}_{=1} X^{B} V_{B}=0 .
\end{aligned}
$$

Gradient

Proposition

Let (\mathcal{M}, g) be a (Pseudo-)Riemannian submanifold of $\left.\left(\mathbb{R}^{N},(\cdot, \cdot)\right)\right)$ and let $f: \mathcal{M} \rightarrow \mathbb{R}$ be a smooth function. The (Pseudo-)Riemannian gradient of f is defined by

$$
\nabla_{A} f(X)=\operatorname{Proj}_{X}\left(\partial_{A} \bar{f}(X)\right)
$$

where \bar{f} is any smooth extension of f to a neighborhood of \mathcal{M} in \mathbb{R}^{N} and ∂ denotes the (Pseudo-)Euclidean gradient w.r.t. the coordinate X.

Retraction

Next, we introduce the concept of retraction at the point $x \in \mathcal{M}$.

Definition

A retraction on a manifold \mathcal{M} is a smooth map R from the tangent bundle $T \mathcal{M}$ onto the manifold \mathcal{M}

$$
R: T \mathcal{M} \rightarrow \mathcal{M}:(x, v) \mapsto R_{x}(v)
$$

such that each curve $c(t)=R_{x}(t v)$ satisfies $c(0)=x$ and $c^{\prime}(0)=v$.

Definition

A second-order retraction R on a (Pseudo-)Riemannian manifold \mathcal{M} is a retraction such that, for all $x \in \mathcal{M}$ and all $v \in T_{x} \mathcal{M}$, the curve $c(t)=R_{x}(t v)$ has zero acceleration at $t=0$, that is, $c^{\prime \prime}(0)=0$.

Examples

Example

The retraction on a linear manifold \mathbb{R}^{N} is a translation

$$
R_{X}(\xi)=x+\xi
$$

where $x \in \mathbb{R}^{N}$ and $\xi \in T_{x} \mathbb{R}^{N}$.

Example

Let $\mathcal{M}=\mathbb{S}^{n-1}$ be the ($n-1$)-dimensional sphere, then a retraction is specified by

$$
R_{X}(\xi)=\frac{X+\xi}{\|X+\xi\|}=\frac{X+\xi}{\sqrt{1+\|\xi\|^{2}}}
$$

where $X \in \mathbb{S}^{n-1}$ and $\xi \in T_{X} \mathbb{S}^{n-1}$.

Using the gradients, hessians, projectors and the second-order retraction we have a Taylor expansion on curves given by,

$$
f\left(R_{x}(v)\right)=f(x)+(v, \nabla f(x))_{x}+\frac{1}{2}\left(v, \nabla_{v} \nabla f(x)\right)_{x}+\mathcal{O}\left(v^{3}\right)
$$

Poisson Bivector

Definition

A Poisson bivector on a smooth manifold \mathcal{M} is a smooth bivector field $\pi \in \Gamma^{\infty}\left(\Lambda^{2}(T \mathcal{M})\right)$, i.e. π is a smooth skew-symmetric tensor, satisfying

$$
\pi^{A B} \partial_{A} \pi^{C D}+\pi^{A C} \partial_{A} \pi^{D B}+\pi^{A D} \partial_{A} \pi^{B C}=0
$$

Choosing local coordinates (U, X), any Poisson bivector is given by

$$
\pi_{\mid U}=\frac{1}{2} \sum_{A, B} \pi^{A B} \frac{\partial}{\partial X^{A}} \wedge \frac{\partial}{\partial X^{B}}
$$

The connection between the Poisson bracket and the Poisson bivector is

$$
\{f, g\}=\sum_{A, B} \pi^{A B} \partial_{A} f \partial_{B} g
$$

The Curved Star Product

Definition

Let the matrix $\Theta:=\theta \pi$, where $\theta \in \mathbb{R}$. Then, the generalized Rieffel product of two functions $(f, g) \in \mathcal{D}_{\rho, \delta}^{m}(\mathcal{M})$ is defined as

$$
\left(f \star_{\theta} g\right)(z) \equiv \lim _{\epsilon \rightarrow 0} \iint \chi_{\epsilon}(X, Y) f\left(R_{Z}(\Theta X)\right) g\left(R_{Z}(Y)\right) e^{-i(X, Y)_{z}} d X d Y
$$

where Z is the embedding point corresponding to $z, X, Y \in T_{Z} \mathcal{M}$.

Properties of the Non-flat Star Product

Proposition

For functions $(f, g) \in \mathcal{D}_{\rho, \delta}^{m}(\mathcal{M})$ the generalized Rieffel product is well-defined and satisfies the following properties

- Unital,

$$
1 \star_{\theta} f=f \star_{\theta} 1=f
$$

- The commutative limit,

$$
\lim _{\theta \rightarrow 0}\left(f \star_{\theta} g\right)(z)=(f \cdot g)(z),
$$

- The flat limit: Retractions are translations with constant Poisson bivector such that the generalized Rieffel product turns to the standard star product.

Associativity

Theorem

Let the Poisson bivector $\pi \in \Gamma^{\infty}\left(\Lambda^{2}\left(T_{Z} \mathcal{M}\right)\right)$ fulfill

$$
\nabla_{U} \pi^{C D}(Z)=0
$$

for all $U \in T_{Z} \mathcal{M}$ and $Z \in \mathcal{M}$. Then, the generalized Rieffel product is associative up to second order in θ, and it is explicitly given by

$$
\left(f \star_{\theta} g\right)(z)=f g-i \Theta^{A B} \partial_{A} f \partial_{B} g-\frac{1}{2} \Theta^{A C} \Theta^{B D} \partial_{A} \nabla_{B} f \partial_{C} \nabla_{D} g,
$$

for functions $(f, g) \in \mathcal{D}_{\rho, \delta}^{m}(\mathcal{M})$.

NC Structures

Proposition

The generalized Rieffel product is Poisson compatible,

$$
\frac{i}{2}\left(f \star_{\theta} g-g \star_{\theta} f\right)=\theta\{f, g\}_{\pi}
$$

Hence, the noncommutativity of the coordinates $\left\{X^{A}, X^{B}\right\}=\pi^{A B}$, follows explicitly from the deformation, i.e.

$$
\left[X^{A}, X^{B}\right]_{\theta}=-2 i \theta \pi^{A B}
$$

For the flat case,

$$
\left[x^{\mu}, x^{\nu}\right]_{\theta}=-2 i \theta \pi^{\mu \nu}
$$

and for the two-sphere

$$
\left[X^{A}, X^{B}\right]_{\theta}=-2 i \theta \varepsilon^{A B}{ }_{C} X^{C} .
$$

Deformed Product for Two Different Points

The main motivation for this extension is the application of deformations to QFT (e.g. two-point function).

Definition

Let the matrix $\Theta:=\theta \pi$, where $\theta \in \mathbb{R}$. Then, the generalized Rieffel product of two functions $(f, g) \in \mathcal{D}_{\rho, \delta}^{m}(\mathcal{M})$ at two different points is defined as

$$
\begin{array}{r}
f\left(z_{1}\right) \star_{\theta} g\left(z_{2}\right) \equiv \lim _{\epsilon \rightarrow 0} \iint \chi_{\epsilon}(X, Y) f\left(R_{Z_{1}}\left(\Theta \delta\left(Z_{1}, Z_{2}\right) X\right)\right) g\left(R_{Z_{2}}(Y)\right) \\
\times e^{-i(X, Y)_{z_{2}}}
\end{array}
$$

where Z_{1} and Z_{2} are the embedding point corresponding to z_{1} and z_{2}, $X, Y \in T_{Z_{2}} \mathcal{M}$. Moreover, $\delta_{B}^{A^{\prime}}\left(Z_{1}, Z_{2}\right)$ is the operator of geodesic transport from $T_{Z_{2}} \mathcal{M}$ to $T_{Z_{1}} \mathcal{M}$.

Explicit Star Product

Proposition

The deformed product for two different points is given up to second order in the deformation parameter as,

$$
\begin{aligned}
f\left(z_{1}\right) \star_{\theta} g\left(z_{2}\right) & =f\left(z_{1}\right) g\left(z_{2}\right)-i \Theta^{A B^{\prime}}\left(Z_{1}, Z_{2}\right) \partial_{A} f\left(Z_{1}\right) \partial_{B^{\prime}} g\left(Z_{2}\right) \\
& -\Theta^{A B C^{\prime} D^{\prime}} \partial_{A} \nabla_{B} f\left(Z_{1}\right) \partial_{C^{\prime}} \nabla_{D^{\prime}} g\left(Z_{2}\right)+\mathcal{O}\left(\Theta^{3}\right),
\end{aligned}
$$

where we defined

$$
\begin{aligned}
\Theta^{A B^{\prime}}\left(Z_{1}, Z_{2}\right) & :=\Theta^{A B}\left(Z_{1}\right) \delta_{B}^{B^{\prime}}\left(Z_{1}, Z_{2}\right), \\
\Theta^{A B C^{\prime} D^{\prime}}\left(Z_{1}, Z_{2}\right) & :=\frac{1}{4}\left(\Theta^{A C} \Theta^{B D}+\Theta^{A D} \Theta^{B C}\right) \delta_{D}^{D^{\prime}}\left(Z_{1}, Z_{2}\right) \delta_{C}^{C^{\prime}}\left(Z_{1}, Z_{2}\right) .
\end{aligned}
$$

\Rightarrow Next, we apply the developed methods to QFT in Curved Spacetimes

Intro QFTCST

QFTs are rigorously constructed for Globally Hyperbolic spacetimes
Advantages: Exist direction of a time, well-posed Cauchy problem
Disadvantages: No preferred State
(GNS) For a given state (positive linear functional) ω over the (unital) *-algebra \mathscr{A}, one obtains a quadruple $\left(\mathcal{H}_{\omega}, D_{\omega}, \pi_{\omega}, \Psi_{\omega}\right)$. Field operators are given by

$$
\phi_{\omega}(F)=\pi_{\omega}(\phi(f)): D_{\omega} \rightarrow \mathcal{H}_{\omega}
$$

Then the n-point functions are given by

$$
\omega_{n}\left(\phi\left(F_{1}\right) \cdots \phi\left(F_{n}\right)\right)=\left\langle\Psi_{\omega} \mid \pi_{\omega}\left(\phi\left(F_{1}\right)\right) \cdots \pi_{\omega}\left(\phi\left(F_{n}\right)\right) \Psi_{\omega}\right\rangle
$$

Hadmard States

Preferred states: Hadamard States (resemble singularity structure Minkowski)

In a convex neighborhood C of (M, g) the Hadamard parametrix is

$$
H_{\epsilon}(x, y)=\frac{u(x, y)}{\sigma_{\epsilon}^{2}(x, y)}+v(x, y) \log \left(\frac{\sigma_{\epsilon}^{2}(x, y)}{\lambda^{2}}\right)
$$

where $\sigma^{2}(x, y)$ is the geodesic distance (the Synge function), T is any local time coordinate increasing towards the future, $\lambda>0$ a length scale and

$$
\sigma_{\epsilon}^{2}(x, y) \stackrel{\text { def }}{=} \sigma^{2}(x, y)+2 i \epsilon(T(x)-T(y))+\epsilon^{2},
$$

Application to QFT in GHST

Definition

For a $*$-algebra $\mathscr{A}=\mathscr{A}(M, g)$ defined on a globally hyperbolic spacetime (M, g) generated by Klein-Gordon fields the deformed 2-point function is defined as follows

$$
\begin{aligned}
& \omega_{2}^{\Theta}\left(\phi\left(F_{1}\right) \phi\left(F_{2}\right)\right):=\left\langle\Psi_{\omega} \mid \pi_{\omega}\left(\phi\left(F_{1}\right)\right) \star_{\theta} \pi_{\omega}\left(\phi\left(F_{2}\right)\right) \Psi_{\omega}\right\rangle \\
& =\int F_{1}\left(x_{1}\right) \star_{\theta} F_{2}\left(x_{2}\right)\left\langle\Psi_{\omega} \mid \pi_{\omega}\left(\phi\left(x_{1}\right)\right) \pi_{\omega}\left(\phi\left(x_{2}\right)\right) \Psi_{\omega}\right\rangle \operatorname{vol}_{g}\left(x_{1}\right) d \operatorname{vol}_{g}\left(x_{2}\right)
\end{aligned}
$$

Does the Deformation make Sense?

Definition

If $u \in \mathcal{D}^{\prime}\left(\mathbb{R}^{n}\right)$, a pair $(x, k) \in \mathbb{R}^{n} \times\left(\mathbb{R}^{n} \backslash\{0\}\right)$ is a regular direction for u if \exists constants $C_{N}, N \in \mathbb{N}$ so that

$$
|\hat{\phi u}(k)|<\frac{C_{N}}{1+|k|^{N}}, \quad \forall k \in V, \quad \phi \in C_{0}^{\infty}\left(\mathbb{R}^{n}\right)
$$

Definition (Wave front set)

The wavefront set of u is defined to be
$W F(u)=\left\{(x, k) \in \mathbb{R}^{n} \times\left(\mathbb{R}^{n} \backslash\{0\}\right):(x, k)\right.$ is not a regular direction for $\left.u\right\}$.

Useful properties of the WF set

- If $f \in C_{0}^{\infty}$ it has an empty wavefront set $W F(f)=\emptyset$.
- $W F(\alpha u+\beta v) \subset W F(u) \cup W F(v)$ for $u, v \in \mathcal{D}^{\prime}\left(\mathbb{R}^{n}\right), \alpha, \beta \in \mathbb{C}$.
- If P is any differential operator with smooth coefficients, then

$$
W F(P u) \subset W F(u)
$$

Let \mathcal{N} be the bundle of nonzero null covectors on M :

$$
\begin{aligned}
\mathcal{N} & =\left\{(x, \xi) \in T^{*} M: \xi \text { a non-zero null at } p\right\} . \\
\mathcal{N}^{ \pm} & =\{(x, \xi) \in \mathcal{N}: \xi \text { is future }(+) / \text { past(}- \text {)directed }\} .
\end{aligned}
$$

WF set and QFT

Definition

A state ω obeys the Microlocal Spectrum Condition $(\mu S C)$ if

$$
W F\left(\omega_{2}\right) \subset \mathcal{N}^{+} \times \mathcal{N}^{-}
$$

Theorem (Radzikowski 96)
The $\mu S C$ is equivalent to the Hadamard condition.
Theorem
If ω and ω^{\prime} obey the $\mu S C$ then

$$
\omega_{2}-\omega_{2}^{\prime} \in C^{\infty}(M \times M)
$$

i.e. the $\mu S C$ determines an equivalence of class of states under equality of the two-point functions modulo C^{∞}.

Micro-local condition in the deformed Setting

Theorem

Let the state ω obey the microlocal spectrum condition. Then, the deformed state ω_{Θ} obeys the microlocal spectrum condition as well, i.e.

$$
W F\left(\omega_{2}^{\ominus}\right) \subset \mathcal{N}^{+} \times \mathcal{N}^{-}
$$

Proof.

$$
\begin{aligned}
\omega_{2}^{\Theta}\left(X_{1}, X_{2}\right)= & P^{\Theta} \omega_{2}\left(X_{1}, X_{2}\right) \\
= & \omega_{2}\left(X_{1}, X_{2}\right)-i \partial_{A} \partial_{B^{\prime}}\left(\Theta^{A B^{\prime}}\left(X_{1}, X_{2}\right) \omega_{2}\left(X_{1}, X_{2}\right)\right) \\
& \quad-\nabla_{A} \partial_{B} \nabla_{C^{\prime}} \partial_{D^{\prime}}\left(\Theta^{A B C^{\prime} D^{\prime}}\left(X_{1}, X_{2}\right) \omega_{2}\left(X_{1}, X_{2}\right)\right),
\end{aligned}
$$

where P^{\ominus} is a fourth-order differential operator with smooth coefficients, that depend on the Poisson bivector, the orthogonal projection and the parallel transport.

Corollary

The deformed two-point function ω_{2}^{Θ} is Hadamard.
\Longrightarrow Deformations physically meaningful since they satisfy the equivalence principle

Uniqueness of Embeddings

Theorem
Let the deformed states ω_{2}^{θ} and $\omega_{2}^{\prime \theta}$ be defined using either two different isomorphic embeddings or/and retractions. Then, the deformed two-point functions ω_{2}^{Θ} and $\omega_{2}^{\Theta \Theta}$ have the same wavefront set, i.e.

$$
W F\left(\omega_{2}^{\Theta}\right)=W F\left(\omega_{2}^{\prime \Theta}\right)
$$

Proof.

Due to the smoothness of the embedding, the deformed two-point functions ω_{2}^{Θ} and $\omega_{2}^{\Theta \Theta}$ obey the $\mu \mathrm{SC}$ and according to Theorem 24 , their difference is smooth. Hence, by Property 1 of the WF set we have

$$
W F\left(\omega_{2}^{\Theta}-\omega_{2}^{\prime \Theta}\right)=0
$$

Conclusions and Outlook

- QFT in noncommutative (or quantized) curved spacetimes agrees with the equivalence principle
- Deformation can be extended to n-point functions
- Rigorous Framework to examine achievements in curved spacetime with NC component, e.g. Hawking effect, Quantum energy inequalities, Entropies (Joint work with H. Grosse, Rainer Verch), semi-classical effects
- Predict testible quantum gravitational effects

Thank you for your Attention!

