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Main message

There exists a very powerful, both geometrically and computationally, formalism for 4D GR

Encodes the spacetime metric into a triple of 2-forms (satisfying some simple algebraic relation)

This formalism is far from being new, it was discovered by Jerzy Plebanski in 1978

Many aspects of this formalism are well-known and standard in the mathematical literature on 4D geometry

The purpose of this talk is to explain you the geometry behind this formalism

And also explain in what sense it is (in my view) superior to the usual metric one

At a very basic level, we are talking here about a convenient and useful choice of variables for GR



Motivations

Gravity = Geometry

GR is the dynamical theory of the spacetime metric
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It is now understood that vacuum Einstein equations R = Aguu

Are the unique diffeomorphism invariant second-order in derivatives equations that can be written down (in 4D)

Predictions of GR agree with all our observations of the Universe so far - Cosmology, Gravitational Waves



Difficulties

Nevertheless, GR is a very difficult theory to deal with

Mathematically, Einstein equations are complicated non-linear hyperbolic (mod gauge)

second-order PDE’s for the metric

Even the statement of well-posedness was only proven in 1952 (Choquet-Bruhat)
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Hidden simplicity
But there are also hints of hidden simplicity

Many parallels with YM theory (or E&M) but both are much simpler than GR

Studying scattering amplitudes one learns that GR=(YM)"2
Also both of these theories have the so-called self-dual sector which is integrable

One of the main achievements of Penrose’s twistor program is establishing this integrability

and also linking it to complex analysis and algebraic geometry

All this is simply invisible in the usual metric formulation



Cartan’s formalism of moving frames

A step towards simplification is made by Cartan’s frame formalism

Given some “geometric structure” = collection of tensors

one can consider all frames “compatible” with this structure

For example, in the metric case this would be all orthonormal frames

In many cases, what arises is a principal G-bundle of such compatible frames

One calls this type of geometry that of G-structures



Riemannian case

For (pseudo-) Riemannian case one obtains the SO(n) or SO(1,n-1) principal bundle of oriented orthonormal frames

This leads to a powerful frame formalism

Concretely, a frameisviewedasamap 6 :R" — T,M

Given such a map one can build the all-important soldering form e: Ty FM — R" where FM 55 M

is the principal frame bundle

This gives rise toan R"™ valued 1-form in the associated R"™ bundle



Frame formalism concretely

Concretely e, [I=1,...,n collection of 1-forms that are declared orthonormal and thus encode the metric

Consider the metric covariant derivative

Then there exists a collection of coefficients ~ w(X)';  suchthat Vxe' =w(X)' se’
This is true because the covariant derivative preserves the metric, and thus the space of its orthonormal 1-forms
Not difficult to show that  w(X) k6™’ = w(X)* s anti-symmetric w'’ = w7

Thus, components of an so(n) or so(1,n-1) connection

Then 2VxVyje' = R(X,Y)e' = (Vxw(Y)' s — Vyw(X)'; + w(X) kw(Y)* ; —w(Y) gw(X)" s)e’

Thus, can extract Riemann curvature from the curvature of the connection w’



Differential forms

The power and the miracle of this formalism is that one can forget about the metric

J __J

' is completely characterised by the projection of the equation Vu€£ = Wy" Je,,

The connection w

onto the space of 2-forms
The resulting equation is de! =w’ ;ne’

Number of equations here is the number of unknowns  R(w)'; = dw” ; + w' x Aw™

Thus, one can compute the Riemann curvature by working with the soldering 1-forms

The only operations one needs to do is take exterior derivatives, wedge products, and solve linear equations for w’ ;

One never needs the metric or the Levi-Civita connection in this formalism!

Even Einstein equations can be written in this language of forms ¢/ /8SLPRIE A el = Ae! /B Led A eF A el
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Action principle
There is a simple action principle that realises all these ideas - can be called Einstein-Cartan action
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In this formalism the metric is encoded into the 1-forms e?

No metric appears explicitly!

This formalism is not optional when one wants to couple gravity to spinors



Difficulties

In spite of this beauty, the frame formalism is still difficult to deal with in explicit calculations with GR

especially those that need perturbation theory

This is a first-order formalism, with only first derivatives in the action
Kinetic term is schematically of the form edw

There are 16 components of the soldering form, and 24 components of the connection
The mismatch is too big to be solved by just gauge-fixing

The propagator in this theory is complicated
This is similar to the situation in the metric first-order formalism  7u 0T 1"
10 components of the metric perturbation, 40 components of the Christoffel symbol perturbation

It is this consideration that suggests to look for an even better alternative

Also quest for formalism that would make simplifications of the self-dual sector manifest



Self-duality

There is an exceptional isomorphism that can be leveraged to produce an even more efficient formalism
SO(4) = SU(2) x SU(2)/Zs
A related fact is that the space of 2-forms in 4D splits
A =ATaA™

In particular, this means that the spin connection splits w = w™ + w™

Both w™ are SO(3) connections

These observations lead to a powerful “chiral” formalism for GR that keeps only one of the two halves of the spin connection



Geometry of 2-formsin 4D

Given a 4D Riemannian manifold (M,g), Hodge star defines % : A> — A? and provides the decomposition
A2 =ATHA™
Remark: the wedge product metric on A“restricted to AT is definite

In the opposite direction, the knowledge of Hodge star is equivalent to the knowledge of the conformal metric [g]

Can encode the Hodge star into a choice of a rank 3 subbundle ATof A? such that the restriction of the wedge product
metric to AT is definite

A+ c A2 such that Group coset isomorphism
& g

AT A AT defnite SO(3,3)/SO(3) x SO(3) = SL(4)/SO(4)

Explicitly g(X,Y) ~ixB' NiyB* A B, BY%8 e AT

Can be checked that BY?% are self-dual with respect to this metric



Encoding a metricinto 2-forms

Starting with a metric, we can consider the principal SO(3) bundle of orthonormal frames for A™

Every such frame can be viewedasamap Y :R°> — A™

The new feature is that being orthonormal and self-dual they necessarily satisfy the property that
the pull-back of the wedge product metric on A* coincides with the metric on R?

In a basis we can write thisas  yi A v o, §iJ

This 2-frame gives rise to an R? -valued 2-form, section of the associated bundle

We can now give a description of 4D Riemannian geometry “locally modelled” on this picture
We start with a rank 3 vector bundle E — M with fibre metric 9i; and of the same topological type as A~

We choose a 2-frame Y : E — A? which satisfies the property that the pull-back of the wedge product metric on
A? coincides with the metricon R® i.e., in a basis 2! A X7 ~ Y

Such a 2-frame encodes the metric As with usual frames, these 2-forms
do not need to be globally defined,

18 functions in a triple of 2-forms, minus 5§ algebraic constraints = 18-§=13 =10+3 they are bundle-valued objects



Representation theory

Given such a 2-frame structure Y : E — A®  possible geometric objects are controlled by the

SO(4) = SU(2) x SU(2)/Z, representation theory

One of the two SU(2)’s does not act on X

The other SU(2) acts as SO(3) on AT insuchawaythat ¥ : E — AT is SO(3) equivariant

All representation theory is controlled by the basic fact that, using the metric defined by 2

can “raise” the index of the triple of 2-forms to convert them into a triple of endomorphisms %* € End(T M)

The resulting endomorphisms satisfy the algebra of imaginary quaternions

1 N V 11 S UV 11k kv
NLONIY = —§i5,Y 4 eliksk



Decomposition of the space of forms

The natural geometric objects in this approach to geometry are E-valued differential forms

We need to understand these objects, and also relate them to more standard tensors

This is all controlled by the simple representation theory of SU(2) x SU(2)

Let us denote the irreducible representations of SU(2) x SU(2) by Sf_ dim(Sk) =2k +1

With the convention that the irreps of the SU(2) that does not act on X are denoted as S*

Then we have the following standard facts A' =S, ® S_
AT =87

Because E ~ AT we have

E@AN' =528, @5 =(S{ 05 )® (S ®@5_)

E@AN =5@(S2as8?)=5,057 oA 05T 852



Explicit description of the subspaces

An explicit description of the invariant subspaces in the spaces of E-valued forms arises from two operators

J:E@A - E® A Ji(A)!, = €IF%I AL J? =21+ .J,
Eigenvalues 2, -1

Eigenspace of eigenvalue 2 spanned by XX, "

Jo : EQ AN — E® A Jo(B)!,, = Eiij{MaBﬁaM Jo(Jo —2)(J2 —1)(J2+1) =0

Explicit parametrisation of eigenspaces VEDVINS (F® A2)5
eTFNYF € (E® A?); E@ AT
pYt € (E® A%), U h,, both tracefree
hi*Elo)) € (B @A) E®A™



Canonical connection

As in the case of frames, there exists a canonical connection in the bundle E after the 2-frame structure is chosen
Proposition: VxX' € (E® A?)3 V- Levi-Civita connection of
To show this, need to show that all other irreducible componentsin E ® A“ vanish the metric defined by >

Because V preserves Hodge VxX'e E@ AT
So, only need to show that  (VxX")145 = 0

These components are computed as ~ 2XV/# 1V y Zi)y = VXZH'LW'Z{U/ = 4V x 6" =0
Corollary:  There exists an E-valued 1-form A}, suchthat ~ V,.X!, = —€7" A/ %78
AZ Is a connection in K

This can also be stated by saying that there exists a canonical connection in E such that the total derivative operator

D=V +A issuchthat DX =0
Proposition: The connection A is completely determined by the projectionto E ® A” d¥t = —eF AT A TP

1 .
Proof: explicit computation, the answeris A = 1 (J1 — I)(*xd>*)



Curvature

We now take another covariant derivative of V,2,, = —€7" A %7 to get

) A wl] 11k 179 k o \1 )
QV[MVV]EPG = le[p — —¢¥/ F,Ljujzpa & R,u,/p Epa = QFMV

o]
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Here [F" =dA"+ 56” “A7 N A* s the curvature of the SO(3) connection A

We have shown that the curvature of A encodes the self-dual part of Riemann with respect to a pair of indices

Corollary: Ry =Aguw < -fuemy =0 o F'=MY%  forsome (symmetric) 3x3 matrix M

Thus, Einstein condition becomes a very simple and natural condition on the curvature of A



Field equations and the action

The full set of field equations in this formalism Come from Plebanski action
AT~ JY T T Sy '
~ S, A V| = [ ¥'F —5(\I!3+§57)E A D7

Ay’ + 7P A NEF =0
. N .
F' = (w + §5w> >

All equations are written only using the exterior derivative Einstein-Cartan action (with zero Lambda)

They can be compared with the usual frame formalism Sle,w| = / el BLel ned N FRE

deIerIJ/\e‘]:()
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Cartan’s first structure equation Why are 2-forms any superior to the frame formalism:

JIKL ] \ pKL _ The answer is in the types of operators that appear in linearised theory

o Also produces much more useful perturbation theory
Ricci-flatness

Also this formalism is ideally adapted to describe instantons



YM self-duality equations

Linearisation of YM self-duality equations £'(A4)+ =0 gives rise to a famous complex of differential operators

4
dA

AO(g) —= Al(g) > A7 (g)

This complex is elliptic - the complex of symbols is exact

Adding the adjoint (gauge-fixing) one gets an elliptic operator

dy+(da)*

Al(g) A°(g) ® A7 ().

This operator is in fact a twisted Dirac operator gRSL 5. > gR 5L RSy

and plays the key role in understanding the local properties of the instanton moduli space

There are analogs of all of this for the case of gravity!

But needs the formalism of 2-frames!



Gravitational instantons

We define gravitational instantons as Riemannian metrics that for which one of the halves of the Riemann curvature vanishes

Riemy = 0
These are automatically Einstein and Ricci-flat, because Einstein conditionis —fttem =0
and the scalar curvature is a component of +£em4 =0

The 2-frame formalism is ideally suited for the description of gravitational instantons
Recall that the curvature F of the SO(3) connection A encodes precisely [tzem

These means that instanton metrics are encoded by 2-frames 2. whose canonical connection is flat

[t is then always possible to choose the 2-framesothat A =0 or

This gives a simple first-order in derivatives description of gravitational instantons

This is well-known, for example Eguchi-Hanson metric was obtained precisely from the condition A =0



HyperKahler

The described gravitational instantons are actually hyperKahler metrics
Riemannian manifolds that possess 3 complex structures satisfying the algebra of imaginary quaternions

These 3 complex structures are just our 3" with one of the indices raised ZZ”

Another way to think about these manifolds is as those with an SU(2) structure

The globally defined triple of 2-forms X" is stabilised by an SU(2) subgroup of SO(4)

For each of the complex structures, the 2-forms define the Kahler form as well as the top holomorphic form

w=° Q=313

The subgroup of SO(4) that preserves the Kahler form is U(2)
The subgroup of SO(4) that in addition preserves the top holomorphic form is SU(2)



Action principle for grav. instantons

There is a simple action principle whose critical points are gravitational instantons

Effectively, it arises by dropping a term in Plebanski action
[hep-th]

Ssp|2, A, V| = /EidAi _ l\pijzi A Y With Skvortsov
, ) 2

The variation with respect to A gives the equation that the 2-frame is closed. We can then parametrise (locally)
¥' =3 +da"  where o' € E@A' and 3¢ is some hyperKahler background

This gives

1 o | | |
Sla, V] = —§/JJZJ(26+daZ)A(Zé+da3)

This is a good point for instanton sector perturbation theory
In particular, one can compute the same helicity Berends-Giele current using this perturbation theory

This current is the main building block of the gravity MHV amplitudes


https://arxiv.org/abs/2106.01397

2502.19027 [math.DG]

Plebanski complex

Theorem: Linearisation of the instanton equations gives rise to the following complex of differential operators

This side is the
diffeomorphism gauge

— TM 25 5 2, EoA -2 F

This side is SO(3) gauge

Where di: TM — S, di1€ = d(£.%Y). And S is the tangent space to the space of 2-frames 2

. ~ S=(E®AN°

ds: EQ A - E,  dsa' =da'| =YY Ada® /vy,

3

This complex is elliptic, the sequence of dimensionsis 4 — 13 — 12 — 3

[ts appropriate gauge-fixing (adding adjoints) can be shown to be related to the direct sum of two Dirac operators

Dy:5.®85. —5_®8,, Di2:5 ®S5_ @57 =8, ®5 ®57.

This complex should be as useful as the YM instanton one!


https://arxiv.org/abs/2502.19027

Scattering amplitudes

Plebanski formalism gives rise to a very useful perturbative expansion
Can compute gravity MHV amplitudes using the technology of Berends-Giele currents
This is the same technique by which MHV gluon amplitudes - Parke-Taylor formula - have been derived

[ will now sketch this calculation, starting with the YM case

The Berends-Giele currents are defined to be the sum of all Feyman diagrams with all legs on-shell, apart from one off-shell leg
The power of this approach to perturbative calculations is in the fact that previously computed BG currents
can be sewn to compute the BG currents for a larger number of particles
Particularly powerful is the application of this technique to BG currents with all particles of the same helicity

or to BG currents with all but one particles of the same helicity

In these cases the arising recursion relations are sufficiently simple to be solvable exactly



Gluon MHV amplitudes

In the case of gluons, direct application of YM Feynman rules gives the following recursion for all-plus BG current

J(1...n)= l(2_:(q\1...m\m—|—1...n|q)J(1...m)J(m—I—1...n)>.

m=1

All currents are vector-valued, but the
vector structure follows the same
The solution is 1 pattern, so only need the scalar part

T ) = 2 = L n)(ng)

This is the recursion for the scalar part of the currents

The all-but-one-plus BG current satisfies a more complicated recursion

T2, n) = ((Q‘Q[‘l'p']”‘p] J(2...n)+ i(qu omlm 1. nlg)J(A)2...m)J(m+ 1. n))

The solution is Only the last term in this sum matters

for MHV amplitudes, which are then

(q|1...m|1...m + 1|q) | extracted
(1...m)*(1...m+ 1)?

m=2

n—1

J(1|2...n) = J(Qn)([l[;]ﬁ]p] |

BG paper of 1987



Graviton MHV amplitudes

Gravity BG currents can be computed using the same philosophy, starting with the perturbative expansion of Plebanski action

One finds that only a single cubic vertex matters for these calculations / eeda
The recursion relation for the scalar part of the all-plus BG currents 1 ,
J(K) = = > @IITe)*I@)IT) | -
The solution is a sum over graphs (spanning trees) Z|<|T|,ZuUT =K

ZJF/C Hq22a4H

1€ (1K) EIC

The recursion relation for the scalar part of the all-but-one-plus BG currents

2 ° °
J(1K) = ! <<q’2[’1‘ ‘]Z’p] J(K) + Z (q‘I‘j|q)2j(1’I)J(j)). Only the last term in this sum matters
P Z)<| T [ ZUT =K for MHV amplitudes, which are then

extracted

The solution is again a sum over graphs

- Z J(1[T'k), J(ATx)/ I (Tk) = 2(T') = Z $i(l'7). Complete parallel with the YM case
I'x I'zClk i=|T]



Conclusions

There is a very powerful formalism that describes 4D Riemannian geometry in terms of triples of 2-forms
These 2-forms are not (normally) globally defined
One can instead think about a single 2-frame field Y : E — AT C A?
The field equations in this formalism are in terms of the exterior derivative operator

Incredibly powerful formalism from which the description of the instanton sector of GR is directly obtainable

Many non-trivial facts about 4D Einstein manifolds are obtained in this formalism in a much simpler way

The linearisation of field equations gives rise to an elliptic complex - analogue of the YM instanton complex
Gravity MHV amplitudes can be computed analogously to the YM case

The next step for this formalism is to tackle a problem that is too difficult in normal metric GR

- Numerical Relativity?
- Gravitational self-force?



Thank you!



